1、不是,质数是指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。质数的个数是无穷的。
2、质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么, 是素数或者不是素数。
1、不是,质数是指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。质数的个数是无穷的。
2、质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么, 是素数或者不是素数。